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Abstract:

Letbe a complete metric space equipped with a doubling Borel measure
supporting the p-Poincar inequality. In this paper, we discuss and study on
the regularity of P-harmonic functions at the boundary points. In particular,
we show that the P-harmonic functions attain their boundary values at all
regular boundary points. Moreover, the set of irregular points is a small set.
We also show that the uniform limit of P-harmonic functions is P-harmonic.
In addition, we obtain various convergence results for the P- harmonic func-
tions with fixed boundary data, on an increasing sequence of open sets.
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1.Introduction

Let 1 <p <o and X = (X,d,u) be acomplete metric space endowed with a
metric d and a doubling Borel measure u, i.e., there exists a constant C = 1 such that

for all balls B = B(x,r) = {y € X:d(x,y) <r} in X we have
0 < u@2B) < C u(B) < oo,

where 2B = B(x, 2r).

The doubling property implies that X is complete if and only if X is proper, i.e.,

closed and bounded sets are compact.

In this paper we study the boundary regularity and some convergence problems for
the p-harmonic functions on certain metric spaces. In R™, the classical p-harmonic
function is the solution of the p-Laplace equation, div(|Vu|P~2Vu) = 0, with a
prescribed boundary values. An equivalent variational formulation of this problem is
the minimization problem

minf |Vu|P dx. (@8}

In a metric measure space we have no partial derivatives, i.e., no gradient but we
have a substitute of the modulus for the usual gradient called upper gradient that was
introduced by Heinonen-Koskela (1). The upper gradient enables us to define and
study Sobolev type spaces in metric spaces. There are many notations of Sobolev
spaces in metric spaces, see for example Cheeger (2) and Shanmugalingam (3), (4).
We shall follow the definition of Shanmugalingam (3), where the Sobolev space
N1P(X) (called the Newtonian space) was defined as the collection of all p-

integrable functions with p-integrable upper gradients, see also Farnana (5).

The p-harmonic function in metric spaces is defined to be the continuous minimizer
of (1), with [Vu| replaced by the minimal upper gradient, whose existence and
uniqueness was proved in Shanmugalingam (4). The p-harmonic functions were
studied e.g., in Shanmugalingam (4), Bjérn—Bjorn (6), Bjérn-Bjérn-Shanmugalingam (7)

and Farnana (8).

This paper is organized as follows. In Section 2, we define Newtonian spaces, the

Sobolev type spaces considered in metric spaces, and give some of their properties.
We also define the p-harmonic functions with a Newtonian boundary values whose
existence and uniqueness is provided by Shanmugalingam (4). It has been shown in

Kinnunen-Shanmugalingam (9) that the p-harmonic functions satisfy the strong
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maximum principle, the Harnack’s inequality and that they are locally Holder

continuous.

In Section 3, we present some convergence results for the p-harmonic functions. In
particular, we show that the uniform limit of a sequence of p-harmonic functions is
also p-harmonic. Moreover, we consider an increasing sequence of open sets €);
whose union is (). We analyze the convergence of the p-harmonic functions in {); with

fixed boundary value f.

In Section 4, we consider the p-harmonic functions with continuous boundary values.
Moreover, we define and study the regular boundary points and show that the p-
harmonic function attains its boundary values at all regular boundary points.
Furthermore, it has been shown that most of the boundary points are regular and that

the set of irregular points is a small set.
2. Notations and preliminaries

A nonnegative Borel function g on X is said to be an upper gradient of an extended
real-valued function f on X if for all rectifiable curves y : [0,ly] = X

parameterized by the arc length ds, we have

Fr©@) - fFyNI< ], gds (2)

whenever both f (y(0)) and f (y(ly)) are finite, and fy g ds = oo otherwise. If g

is a nonnegative measurable function on X and if (2) holds for p-almost every curve

then g is a p-weak upper gradient of f.

By saying that (2) holds for p-almost every curve we mean that it fails only for a

curve family with zero p-modulus, see Definition 2.1 in Shanmugalingam (3).

The upper gradient in not unique. In particular, from (2) every Borel function greater
than g will be another upper gradient of f. However, if f has an upper gradient in

LP(X), then it has a unique minimal p-weak upper gradient g; € LP(X) in the sense
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that for every p-weak upper gradient g € LP(X) of f we have gr < g ae., see
Corollary 3.7 in Shanmugalingam (4).

The operation of taking an upper gradient is not linear. However, we have the
following useful property. If a,b € R and g;,g, are upper gradients of uq,u,,
respectively. Then |a|g; + |b|g, is an upper gradient of au; + bu,.

In Shanmugalingam (3), upper gradients have been used to define Sobolev type

spaces on metric spaces. We will use the following equivalent definition.
Definition 2.1

Letu € LP(X), then we define

1/p
Il = ( | P e [ g du)
X X

where g, is the minimal p-weak upper gradient of u. The Newtonian space on X is

the quotient space
N*P(X) = {u: Il w llyip x)< 0}/~,
where u~v ifand only if | u —v ”Nl,p(X) = 0.

The space NP (X) is a Banach space and a lattice, see Theorem 3.7 and p.249 in
Shanmugalingam (3).

Definition 2.2
The Capacity of aset E c X is defined by

Cp(E) = inf Il w llyunyy

where the infimnm is taken over all u € NP (X) such thatu > 1 on E.
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We say that a property holds quasieverywhere (q.e.) in X, if it holds everywhere
except a set of capacity zero. Newtonian functions are well defined up to sets of
capacity zero, ie. if u, v € NVP(X) then u~v if and only if u=vqe.
Moreover, Corollary 3.3 in Shanmugalingam (3) shows that if u,v € N'?(X) and

u=v ae,thenu =v q.e.in X.

From now on we assume that X supports a p—Poincaré inequality, i.e., there exist
constants € > 0and A > 1 such that for all balls B(x,7r) in X, all integrable

functions u on X and all upper gradients g of u we have

1
“’(B ) B(x,1)

1/p
[u — Ul du < CT< g° dﬂ) ’

u(B) B(x,Ar)

Under the above assumptions, every function u € N¥P(X) is a quasicontinuous, i.e.,
for every &> 0 there is an open set G € X such that C,(G) <& and u|y\g is
continuous, see Theorem 1.1 in Bjorn-Bjorn-Shanmugalingam (10). Moreover, when
restricted to R™ the Newtonian space NP(R™) is the refined Sobolev space

WP (R™),

For Q © X open we define the space N1 (Q) with respect to the restrictions of the
metric d and the measure u to (. It is well known in the field that the restriction to
of a minimal p-weak upper gradient in X remains minimal with respect to (), see

Bjorn-Bjorn (11).

A function u is said to belong to the local Newtonian space Nﬁ)’f (Q) if u€e N (G)

for every G € (), where by G € (0 we mean that the closure of G is a compact subset

of Q.

To be able to compare the boundary values of Newtonian functions, we need to

define a Newtonian space with zero boundary values outside of € as follows
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NyP(Q) = {flq:f ENYP(X) and f=0 q.e.in X\Q}

Under our assumptions, Lipschitz functions with compact support are dense in
Ng P(Q), see Shanmugalingam (4). Moreover, the proof of this result in Bjérn—Bjérn

[11] shows thatif 0 < u < N; P (), then we can choose the Lipschitz

approximations to be nonnegative and pointwise smaller than the function u.
Definition 2.3

Suppose that Q € X is open and bounded. A function u € N Lp () is a minimizer

in Q if for every function v € N*P(Q) withu — v € NP (Q), we have

f gZdqu gy du,
Q Q

where g, and g, are the minimal p-weak upper gradients of u and v respectively.

We also say that a function u is p-harmonic if it is a continuous minimizer.

If u is a minimizer (or p-harmonic) and «, f € R, then au + [ is a minimizer (or p-
harmonic). Note, however, that the sum of two minimizers (or p-harmonic) functions
need not to be a p-harmonic function and thus the theory is not linear. We instead

have the minimum of two p-harmonic functions is a p-harmonic.

In Shanmugalingam (4) it was shown that there exists a unique minimizer for every

u € N*P(Q), see also Theorem 4.2 in Farnana (8).
Theorem 2.4

Assume that Q0 is open and bounded such that C,(X \Q2) > 0. Let f € N 12(Q), then

there exists a unique minimizer u (up to set of capacity zero) with u — f € N; P(Q).
Definition 2.5

By the p-harmonic extension of f € N'?(Q) to  we mean the continuous

minimizer with boundary values f and will be denoted by Hf .
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Note that, —Hf will be the p-harmonic extension of —f € NP (Q) to Q.
Lemma 2.6 (comparison principle)

Assume that Q is open bounded and that C, (X \Q) > 0. Let f;,f, €N P (X) be such
that f; < f, q.e.in 00. Then Hf; < Hf, in Q.

The p-harmonic functions satisfy many useful properties. In particular, they are
locally Holder continuous and satisfy the maximum principle: If u attains its
maximum (or minimum) in (), then it is a constant. Moreover, nonnegative p-

harmonic functions satisfy the Harnack inequality i.e., supgyu < C igf u for all

compact K c (), see Kinnunen-Shanmugalingam (9).
3. Convergence results for p-harmonic functions.

In this section, we study various convergence problems for p-harmonic functions, by
letting the boundary values converge in some sense and show that the corresponding
p-harmonic extensions will converge as well. Moreover, we consider an increasing
sequence of open sets {); whose union is Q and fix the boundary values f. We
analyze the convergence of the p-harmonic extensions in £; to the p-harmonic

extensions in (.

The following theorem shows that the uniform limit of p-harmonic functions is also

p-harmonic. It is from Kinnunen- Shanmugalingam (9).

Theorem 3.1

Let {u;}72; be asequence of p-harmonic functions that converges locally uniformly
in Q. Then u is p-harmonic.

The following theorem is from Shanmugalingam (12).

Theorem 3.2 (Harnack's convergence theorem)
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Let Q be connected and let {u;}7Z; be a sequence of nonnegative p-harmonic
functions in . Assume that there is some x € Q such that u;(x) < C, j =1,2,-,
for some constant C. Then a subsequence of {u;}7Z; converges locally uniformly to a

p-harmonic in .

The following result is a special case of Theorem 3.3 from Farnana (13) and also a

special case of Theorem 10.18 in Bjorn-Bjorn (11).
Theorem 3.3

Let {fj}j2; beaq.e. decreasing sequence such that f; — f in NP(Q)asj — o,

Then Hf; decreases to Hf locally uniformly in €.
Remark 3.4

Note that, Theorem 3.3 also holds if {f;}jZ; isa q.e. increasing sequence as {—f;}7Z,
will a g.e. decreasing sequence of p-harmonic functions which implies that —H f;
decreases q.e. to - Hf locally uniformly in Q. Hence Hf; increases q.e.to Hf

locally uniformly in Q.

In fact Theorem 3 in Kinnunen-Marola-Martio (14) shows that if {f;}7Z; isa
bounded sequence in N'?(Q) and f; — f q.e. in Q (not necessarily monotone), as

Jj — oo, then Hf; — Hf locally uniformly in Q, as j — oo.
Theorem 3.5 (Corollary 9.38 in (11))

Assume that Q is connected. Let {;}72; be an increasing sequence of p-harmonic
functions in ( such that u = lim;_,, u; is not identically co. Then u is p-harmonic in

Q.
Theorem 3.6 (Theorem 9.21 in (11))

Let Q; € Q, € Q3 € -+ € Q= UjL; Q. Then u is p-harmonic in @ if and only if it

is p-harmonic in ; forj = 1,2,---.
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Theorem 3.7 (Theorem 9.36 in (11))

Let 0 €, € Q3 © - < Q= U5, Qand let u; be p-harmonicin @y, j = 1,2,

If uj — u locally uniformly in €, then u is p-harmonic in (.

4. Boundary regularity for p-harmonic functions.

In this section, we follow Bjorn-Bjorn-Shanmugalingam (7) and extend the

definition of p-harmonic extension for continuous boundary functions.

The following lemma shows that Lipschitz functions on a set can be extended to a
Lipschitz on a larger set, see Lemma 5.2 in Bjorn-Bjorn (11) or Theorem 6.2 in

Heinonen (15).
Lemma 4.1

Let E c X and let f: E — R be L-Lipschitz. Then there exist two L-Lipschitz
functions f, f:X — R defined by

fO):= nf(fO) + Ld(xy))  and  f():=sup(f() + Ld(x,y)),

such that zgf in X and that £=f=7 on E.

If f € Lip(X) € NY*P(X), then Hf is well defined. As for f € Lip(dQ) the above
lemma shows that f can be extended to a Lipschitz function in X. This means that,
we can define the p-harmonic extension for a function f € Lip(9Q) and the Hf will
be independent of the choice of the extension of f, as follows: If f € Lip(9Q),
Lemma 4.1 shows that we can extended f to a Lipschitz function on X. If f;, f, are
two extensions of f then f; = f, on dQ. The comparison Lemma 2.6 shows that

Hf, = Hf, in Q.

If f € C(0Q), then it can be approximated uniformly by Lipschitz functions, by the
Stone-Weierstrass theorem in Rudin (16), p.122

Definition 4.2
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Let f € C(0Q), define Hf: Q0 — R by

Hf (x) = sup  He(x), x €Q
Lip(dQ)3¢p<f

The following lemma from Bjorn-Bjorn-Shanmugalingam(7).
Lemma 4.3

Let f € C(0Q). Then Hf is p-harmonic in Q and
Hf (x) = infiipaa)se<r Hp(x) = lim;_, Hf;(Q) x€Q,

for every sequence { fJ} L of functions in Lip(0Q) that converges uniformly to f.

j:
Proof.
Let f; € Lip(8Q) be such that |f(x) — f;(x)| < 1/j forall x € 0Q and j = 1,2, ....

Then |f;,(x) = fj, (x)| < 2/j forall x € dQ and j',j" > j. The comparison principle

implies that for all x € (Q,
2 2
Hfj (x) -7 = Hfjn(x) < Hfjr(x) +5

which shows that {H f;(x)}72, is a Cauchy sequence in . Hence the limith(x) :=

lim;_,, Hf;(x) exists and by Theorem 3.7 is a p-harmonic in (. Using the

comparing principle to the inequality f; — % <f<f +% implies that

hGx) = lim H(f; = 1/)(x)

< su Hp(x) < inf Ho(x
Lip(an)gq;sf () Lip(0Q)3¢=f ()

< lim H(f; + 1/j)(x) = h(x)
j—co
which finishes the proof.

The following lemma extends the comparison principle Lemma 2.6 to p-harmonic
extensions of functions in C(9Q).
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Lemma 4.4 (Comparison principle).

Let Qis bounded and that C,(X \Q) > 0. Let f;, f, € C(0Q) be such that f; < f,
q.e.in d02. Then Hf; < Hf, in Q.

We should mention here that the harmonic extension Hf of f to (1 is continuous
only in (), and we may not have continuity of Hf up to the boundary. This will
depend on the boundary points.

Definition 4.5

Let Q be bounded with C,(X \Q) > 0. A point x, € Q is regular if

Qal;ch Hf(x) = f (xo) forall f e C(0Q).

If all xy € Q are regular, then Q is regular. We also say that x, € 9Q is irregular if
it not regular.

The following property is from Bjorn-Bjorn-Shanmugalingam (7). It shows that
the set of irregular points is a small set and that most of the boundary points are
regular.

Lemma 4.6 (The Kellogg property).

Let I, < 9Q be the set of all irregular points. Then C, (Ip) =0.

The following result shows that the p-harmonic extension of a function f attains its
boundary point at all regular points.

Theorem 4.7 (Theorem 3.9 in (7))

If fe€C(0Q) and x, € 0Q is a regular boundary point, then
lim Hf (x) = f(x,)
X—Xq

The following result from Bjorn-Bjorn-Shanmugalingam (7) shows that the p-
harmonic extension of a function f is the unique p-harmonic function that attains the

boundary points.
Proposition 4.8

Let f € C(0Q) assume that Q is a regular domain. If u is p-harmonic function in ()
such that lim,_,, u(x) = f(xo) forall x, € 0Q. Thenu = Hf in Q.
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Proof

Let £ > 0 and for every x, € 9Q find 1, € (0, €) such that [u(x) — f(xo)| < & and
[Hf (x) — f(x0)| < & whenever x € B(xo,7y,) N Q. By compactness, we have

00 c Uj_,B; with B; = B(x;,73,)). Let Q' = Q\U}, B, and choose a function

n € Lip(2), so thatn = 1on Q'. Thennu € NYP(X) and n Hf € N¥P(X) are both
p-harmonic in ', and furthermore, on 9’ they satisfy the condition

nHf —2e <nu<nHf + 2¢.

Now the comparing principle and the fact that 7 = 1 on Q' imply that
nHf —2e <nu<nHf + 2¢,

in Q. Letting ¢ — 0wegetu = Hf in Q.

Theorem 4.9

For every f € C(0Q) there exists a unique bounded p-harmonic function Hf in )
such that

lim Hf(x) = f(xq) for q.e. x, € 0Q.

Q3x-x¢
5. Conclusion

In this study, we assumed that Q is open and bounded. We investigated the
convergence of the p-harmonic functions when the boundary values vary. Moreover,
we considered an increasing sequence of open sets and analyzed the convergence of
the corresponding p-harmonic functions.

The findings showed that the uniform limit of p-harmonic functions is also p-
harmonic. Moreover, when the boundary values converge in the N7 (Q) space, then
the corresponding p-harmonic functions converges locally uniformly in Q. As for the
boundary regularity, the study showed that for f € C(9(Q) the p-harmonic extension
is the unique bounded p-harmonic function that attains the boundary values at all
regular points.

For future study, we recommend to study the p-harmonic functions in unbounded and
non-open sets. Moreover, for the convergence problems, we recommend studying the
convergence of the p-harmonic functions in the Newtonian space and under what
conditions it would be obtained.
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